5,238 research outputs found

    Multilevel blocking Monte Carlo simulations for quantum dots

    Full text link
    This article provides an introduction to the ideas behind the multilevel blocking (MLB) approach to the fermion sign problem in path-integral Monte Carlo simulations, and also gives a detailed discussion of MLB results for quantum dots. MLB can turn the exponential severity of the sign problem into an algebraic one, thereby enabling numerically exact studies of otherwise inaccessible systems. Low-temperature simulation results for up to eight strongly correlated electrons in a parabolic 2D quantum dot are presented.Comment: 10 Pages, includes 4 figures and mprocl.st

    Large-Scale Simulations of the Two-Dimensional Melting of Hard Disks

    Full text link
    Large-scale computer simulations involving more than a million particles have been performed to study the melting transition in a two-dimensional hard disk fluid. The van der Waals loop previously observed in the pressure-density relationship of smaller simulations is shown to be an artifact of finite-size effects. Together with a detailed scaling analysis of the bond orientation order, the new results provide compelling evidence for the Halperin-Nelson-Young picture. Scaling analysis of the translational order also yields a lower bound for the melting density that is much higher than previously thought.Comment: 4 pages, 4 figure

    Relieving the fermionic and the dynamical sign problem: Multilevel Blocking Monte Carlo simulations

    Get PDF
    This article gives an introduction to the multilevel blocking (MLB) approach to both the fermion and the dynamical sign problem in path-integral Monte Carlo simulations. MLB is able to substantially relieve the sign problem in many situations. Besides an exposition of the method, its accuracy and several potential pitfalls are discussed, providing guidelines for the proper choice of certain MLB parameters. Simulation results are shown for strongly interacting electrons in a 2D parabolic quantum dot, the real-time dynamics of several simple model systems, and the dissipative two-state dynamics (spin-boson problem).Comment: Review, 20 pages REVTeX, incl. 7 figure

    Is the direct observation of electronic coherence in electron transfer reactions possible?

    Full text link
    The observability of electronic coherence in electron transfer reactions is discussed. We show that under appropriate circumstances large-amplitude oscillations can be found in the electronic occupation probabilities. The initial preparation of the system is of crucial importance for this effect, and we discuss conditions under which experiments detecting electronic coherence should be feasible. The Feynman-Vernon influence functional formalism is extended to examine more general and experimentally relevant initial preparations. Analytical expressions and path integral quantum dynamics simulations were developed to study the effects of various initial preparations on the observability of electronic coherence.Comment: 14 pages, 9 figures, to be published in J. Chem. Phy
    • …
    corecore